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Abstract:  Efficiency plays an important role in the assessment of a design. An efficient design utilizes the design structure 

and information effectively. This study comparatively examines the design efficiencies of D- and A-optimal 

designs for Poisson regression models with two and three variables. The optimal designs were constructed for the 

considered models and their design efficiencies evaluated. The two-variable Poisson regression model was 

observed to yield greater efficiencies than the Poisson regression model with three variables. The A-optimality 

criterion produced greater design efficiencies both for the two- and three-variable Poisson regression models than 

the D-optimality criterion. The study recommends that the two-variable Poisson regression model should be 

broadly preferred to the three-variable Poisson regression model especially for A-optimality. 
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Introduction 

Efficiency is a crucial phenomenon in optimal designs of 

experiments. A highly efficient design enhances good 

classification of optimal experimental designs through 

available data. Optimal designs aid exact estimation of model 

parameters by minimizing the variance of estimators; this also 

improves the design power. 

Smith (1918) pioneered researches in the field of optimal 

experimental design through the formulation of a study on 

optimal experimental designs using mathematical approach. 

Smith (1918) formulated an innovative mathematical study on 

design of experiments and this was later extended by Kiefer 

and Wolfowitz (1959) when the formation of a “theoretical” 

framework aimed at obtaining optimal designs based on 

criteria through the expression of design as a measure of 

probability that represents treatment allocations to any 

specific region in the design space was considered. The 

methodology formed, and the discussions on D- and E-

optimality criteria concerning a regression model in linear 

terms set the foundation for other design criteria such as the 

A-, F-, G- and Q-optimality criteria. 

Before data collection is considered, optimal designs can be 

strategized or designs can be premeditated such that collection 

of data is done consecutively. In either procedure, an 

experiment that is cautiously designed, can give precise 

statistical inference at very low cost and with great efficiency. 

Berger and Wong (2009) demonstrated that the number of 

observations when optimal designs are constructed is being 

reduced by 20 to 40% as compared to classical designs. 

Determinant of Fisher information matrix was used to study 

designs for D-optimality comparatively (Wald, 1943). Silvey 

(1980) presented explicit descriptions of the most frequently 

used design criterion in optimization problems. 

Aguiar et al. (1995) noted that several classical symmetrical 

designs exhibit required features, one of which is the D-

optimality. Application of the notion of D-optimality can be 

extended to the selection of design when the classical 

symmetrical designs cannot be used, for instance, when there 

is irregularity in the shape of experimental region, when 

dealing with very large experimental runs for a classical 

design the number of experiments chosen by a classical design 

is too large or when one considers application of models that 

differ from that of the usual first or second order. 

Bingham and Chipman (1996) introduced a design criterion 

that searches for the maximization of discriminating link 

between models. The Hellinger distance between predictive 

distributions in competing models, inspired by Meyer et al. 

(1996) is the basis on which the criterion is found. The bound 

of the criterion that critically increases improvement in 

interpretability was obtained. The set of all possible models to 

be compared was noted to be massive, observing that all 

models were not possible alike. A Bayesian approach was 

employed in addressing the challenge. The method contains 

prior distributions on the space of models, signifying 

inclination for models that are attractive instinctively. Typical 

examples of such models are the ones whose effects are few, 

models with more of low order than high order effects and 

models with inheritance structure between active main effects 

and interactions. Procedures of assessment of the criterion and 

search of optimal designs were presented. The significant 

effects of regular and non-regular designs, robust designs, as 

well as scenarios with limited previous knowledge were 

considered to illustrate the efficiency of the design criterion 

through some examples. 

Boer and Hendrix (2000) showed the formation of an 

inspiring applicable area of global optimization through 

optimal experimental designs. The structures of challenging 

global optimisation problems and the corresponding 

procedures of determining such structures through optimal 

designs were considered. Discussion was majorly on three 

types of designs; these include the exact designs, replication-

free designs and discrete designs. Generation of optimal 

designs for the three notions was observed to comprise 

different optimisation problems. 

Dror and Steinberg (2005) proposed a quick and easy 

technique that aids the construction of approximate locally D-

optimal designs with great efficiencies for multivariate models 

containing binary responses. D-optimal designs were obtained 

through theapproach for similar problem having a normally 

distributed response containing the same linear predictor, with 

a supposition of homogeneity in variance.The required change 

for the transformation of the standard design into an efficient 

one using multivariate logit or probit model is shifting a 

design point that has too low or very high probability to the 

nearest possible point of moderate probability. 

Debusho and Haines (2010) considered a simple linear 

regression model with random coefficient for generating D-

optimal designs. The factors were extracted from a group of 

time points of equal spacing and infrequence. The dependence 

of the designs on variance-component values was examined. 

Linear transformation of the time points does not necessarily 

guarantee the mapping onto one another of the designs when 

population with both fixed effects and variance components 

were considered. Numerical illustration was presented through 

an example to validate the finding. 
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Schorning et al. (2017) considered an actively controlled 

clinical dose discovery experiment for the derivation of 

optimal designs in estimating the efficacy and toxicity when 

the bivariate continuous outcomes are modeled either by 

second order polynomial, Michaelis-Menten model, Emax 

model, or a mixture of any two. The sufficient conditions for 

the addition of boundary points of the design space in the 

optimal design were provided and higher bounds of the 

number of diverse dose levels necessary for the optimal 

design were obtained. The independence of the minimally 

supported D-optimal designs on the correlation between 

bivariate outcomes was analytically described. Demonstration 

of the proposed methods through numerical examples was 

illustrated and the advantage of the D-optimal designs was 

also demonstrated using experiment that was lately examined 

in the literature. 

This research evaluates the efficiencies of the D- and A- 

optimal criteria for Poisson regression models with two and 

three variables.  

 

Materials and Methods 

Poisson regression model 

Poisson regression model can be broadly written as follows: 

   𝑦𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜏𝑖) 

The mean response,𝜏𝑖, can as well be expressed as follows: 

      𝜏𝑖  =  𝑒𝑥𝑝(𝑋𝑖
′𝛽) 

Where: 𝑦𝑖𝑗 are the response variables, 𝜏𝑖 is the expectation of 

the response variable at the ith design point 𝑋𝑖
′ is the design 

matrix containing factors 𝑋𝑖 (i = 1, 2, …), 𝛽 is a vector of 

parameters 

 

Construction of D-optimal designs for Poisson regression 

models with two and three variables 

The two- and three-variable Poisson regression models can be 

represented by equations (2.1) and (2.2), respectively; 

   𝜏𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖)(2.1) 

and 

𝜏𝑖  =  𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖)            (2.2)    
The D-optimum design searches for the maximization of the 

determinant of the Fisher information matrix or equivalent 

lysearches for the minimization of the determinant of the 

inverse of the Fisher information matrix.  

Mathematically, if the dimension of 𝛽 is 𝑝 × 1, the Fisher 

information matrix, I(𝑋, 𝛽), is a 𝑝 × 𝑝 matrix as presented in 

equation (2.3) 

 𝐼 (Х, 𝛽) =  − 𝐸 [
𝜕2 log(𝐿(Х, 𝛽))

𝜕𝛽𝜕𝛽′
]        (2.3) 

Where: (𝐿(Х, 𝛽) is the likelihood function of the data,  X, is 

the design matrix. 

 

The commonly used D-optimal criterion is defined by 

equation (2.4) 

                                                  max
𝑋∈𝒟

𝑑𝑒𝑡 [
I (Х, 𝛽)

𝑛
],        (2.4) 

Where: n is the total sample size, 𝓓 is the set of all possible 

designs.  

 

Since in most cases, n is fixed, the D-optimal design is 

obtained by maximizing the determinant of the Fisher 

information matrix. 

The information matrix is expressly defined in terms of a 

design measure as M(𝜉;  β). 

D-optimal = min[| (X'X) −1|] or max[(X'X)]. 

 

For the two-variable Poisson regression model in equation 

(2.1), the transformation via the natural logarithm and first 

derivative are presented in equations (2.5) and (2.6) 

respectively. 

    𝑙𝑛 𝜏𝑖 = 𝜂𝑖 =  𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖        (2.5) 

Here, 

     𝑓 ′(𝑥𝑖) = (1, 𝑥1,     𝑥2)                   (2.6) 

 

The elements of the information matrix are thus obtained as 

equation (2.7): 

M =  X′X = [

1 𝑥1 𝑥2

𝑥1 𝑥1
2 𝑥1𝑥2

𝑥2 𝑥1𝑥2 𝑥2
2

] ,                  (2.7)  

 

The Fisher information matrix can be expressed in a compact 

form as equation (2.8): 

  M(𝜉; β
0
, β

1
, β

2
) =  ∑ 𝑤𝑖𝜏𝑖𝑓(𝑥𝑖) 𝑓

′(𝑥𝑖)        (2.8) 

and more compactly, as equation (2.9) 

M(𝜉; β
0
, β

1
, β

2
)  =  𝑋 ′𝑊𝑋                          (2.9) 

Where: 𝑤𝑖 denote the weights of the support points, 𝜏𝑖 =
exp (𝜂𝑖), is the mean response of the ith design point, 𝜉 is the 

design measure, 𝑊 = 𝑑𝑖𝑎𝑔{𝑤𝑖 𝜏𝑖} , 𝑋 = [𝑓(𝑥1), 𝑓(𝑥2)] 
 

 

Explicitly, the Fisher information matrix can therefore be expressed as equation (2.10): 

          M(𝜉; β
0
, β

1
, β

2
) =   

[
 
 
 
 
 ∑𝑤𝑖𝜏𝑖 ∑𝑤𝑖𝜏𝑖 𝑥1i ∑𝑤𝑖𝜏𝑖 𝑥2i

∑𝑤𝑖𝜏𝑖 𝑥1i ∑𝑤𝑖𝜏𝑖 𝑥1i
2 ∑𝑤𝑖𝜏𝑖 𝑥1i𝑥2i

∑𝑤𝑖𝜏𝑖 𝑥2i ∑𝑤𝑖𝜏𝑖 𝑥1i𝑥2i ∑𝑤𝑖𝜏𝑖 𝑥2i
2

]
 
 
 
 
 

                           (2.10) 

 

The D-optimal design, 𝜉∗, for the two-variable Poisson regression model is that function that satisfies equation (2.11) 

| M(𝜉∗;  β
0
, β

1
, β

2
)| =  max

𝜉∈𝛯
|𝑀(𝜉; 𝛽0, 𝛽1, 𝛽2)| (2.11) 

 

To obtain the efficiency with regards to D-optimal design for the model, the efficiency of design, 𝜉, is measured relative to 

design,𝜉∗. The D-efficiency of a random design,𝜉, is thus defined as equation (2.12a): 

D𝑒𝑓𝑓 = (
|M(𝜉; β

0
, β

1
, β

2
)|

|M(𝜉∗;  β
0
, β

1
, β

2
)|

)

1
p⁄

                                                                (2.12𝑎) 

 

Alternatively, the D-efficiency can be computed by equation (2.12b) 

D − efficiency =  100 ∗ [(|X′X|1/𝑝)/𝑁] (2.12𝑏) 
Where: p represents the number of parameter and Nis the number of experimental runs. 
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For the three-variable Poisson regression model in equation (2.2), the information matrix is obtained as equation (2.13); 

M(𝜉, β
0
, β

1
, β

2
, β

3
) =

[
 
 
 
 
 
 
 
 
 
 
 

∑𝑤𝑖𝜏𝑖

4

𝑖=1

∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥1i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥2i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥3i

∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥1i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥1i
2 ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥1i𝑥2i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥1i𝑥3i

∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥2i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥1i𝑥2i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥2i
2 ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥2i𝑥3i

∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥3i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥1i𝑥3i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥2i𝑥3i ∑𝑤𝑖𝜏𝑖

4

𝑖=1

𝑥3i
2

]
 
 
 
 
 
 
 
 
 
 
 

           (2.13) 

 

The D-optimal design for the model in equation (2.2) is that 

function that satisfies equation (2.14) 

|M(𝜉∗;  β
0
, β

1
, β

2
, β

3
)|

=  max
𝜉∈𝛯

|𝑀(𝜉; 𝛽0, 𝛽1, 𝛽2, β3
)|       (2.14) 

 

In the same vein, the D-efficiency for the model is obtained 

by equation (2.15): 

   D𝑒𝑓𝑓 = (
|M(𝜉; β

0
, β

1
, β

2
, β

3
)|

|M(𝜉∗;  β
0
, β

1
, β

2
, β

3
)|

)

1
p⁄

           (2.15) 

 

Construction of A-optimal designs for Poisson regression 

models with two and three variables 

TheA-optimality design criterion seeks the minimization of 

the trace relating to the inverse of the information matrix. In 

other words, the sum of the variances of the parameter 

estimates is minimized, equivalently minimizing the average 

variance. 

For the model in equation (2.1),with information matrix 

presented in equation (2.10), the A-optimal design can be 

computed via equation (2.16) 

𝐴 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = min[𝑡𝑟(𝑀(𝜉; 𝛽0, 𝛽1 , 𝛽2))]     (2.16) 
In terms of eigenvalues, suppose the information matrix in 

equation (2.10) has eigenvalues, 𝜆𝑖, then, the expression for 

A-optimality is as presented in equation (2.17) 

  𝐴 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  𝑚𝑖𝑛∑
1

𝜆𝑖

𝑝

𝑖=1

              (2.17) 

Where: 𝜆𝑖 are the eigen values of the information matrix, and 

p is the number of parameters. 

 

The efficiency of A-optimal design can be calculated by 

equation (2.18) 

  A − efficiency =  100 ∗ [p/trace(N ∗ (𝐗′𝐗)−1)]     (2.18) 

 

Results and Discussion 

D-optimal designs for Poisson regression models with 

two and three variables 

The results of D-optimal designs for Poisson regression 

models with two and three predictor variables in linear terms 

are presented in this section. 

Considering the two-variable Poisson regression model in 

equation (2.1), the assumption is that 𝑥1𝑖 , 𝑥2𝑖 ∈ [0, 1] (𝑖 =
1,⋯ , 𝑝 + 1), and 𝛽 = (1, 2, −2)𝑇. 

At 3-design points, the generated D-optimal design is 

presented in equation (3.1a) 

  𝜉𝐷
∗ = {

(0, 0)(1, 1)(1, 0)
1

3

1

3

1

3

}        (3.1𝑎)   

Equation (3.1a) shows the D-optimal designsconstructed for 

the multiple linear Poisson regression model pertaining to two 

predictor variables. It thus means that if there are 100 

experimental runs, 33.33% of the total units should be 

allocated to design points 𝑥1 = 0and 𝑥2 = 0,  𝑥1 = 1 and 

𝑥2 = 1, and 𝑥1 = 1 and 𝑥2 = 0, respectively. 

At 4-design points, the D-optimal design constructed for the 

multiple linear Poisson regression model in two variables 

using the same constrained design space is presented in 

equation (3.1b); 

𝜉𝐷
∗ = {

(0,   0)(0, 1)(1,   0)(1,    1)
1

4

1

4

1

4

1

4

}      (3.1b)  

 

Considering equation (3.1b), the design for the multiple linear 

Poisson regression model in two variableis also D-optimal at a 

collection of 4 design points 𝑥1 = 0 and 𝑥2 = 0, 𝑥1 = 0 and 

𝑥2 = 1, 𝑥1 = 1 and 𝑥2 = 0 and 𝑥1 = 1 and 𝑥2 = 1. Each 

group of design points has design weight of 0.25. 

Consideringthe Poisson regression model with three design 

variables in equation (2.2), the generated D-optimal designs is 

presented in equation (3.2); 

 𝜉𝐷
∗ =  {

(1,   0,   1)(0,   0,   0)(1,   1,   1)(0,   0,   1)
1

4

1

4

1

4

1

4

}     (3.2) 

 

Using 𝛽 =  (4, 1, 3, 2)𝑇 as the best vector of parameter 

guess, equation (3.2) shows that the designsconstructed for the 

multiple linear Poisson regression model with three predictor 

variables is D-optimal at 4-design points 𝑥1 =  1, 𝑥2 =  0, 

𝑥3 =  1; 𝑥1 =  0, 𝑥2 =  0, 𝑥3 =  0; 𝑥1 =  1, 𝑥2 =  1, 𝑥3 =  1; 

and 𝑥1 =  0, 𝑥2 =  0, 𝑥3 =  1. This means that, in an 

experimental layout, 25% of the total experimental runs are 

allocated to each optimal design region. 

A-optimal designs for Poisson regression models with 

two and three variables 

The results of A-optimal design pertaining to a Poisson 

regression model with two predictor variables is hereby 

presented and discussed. For Poisson regression model 

involving two predictor variables, the constructed A-optimal 

design is presented in equation (3.3a) 

𝜉𝐴
∗ = {

(0, 0)(0, 1)(1, 0)(1, 1)

1

4

1

4

1

4

1

4

}      (3.3𝑎)  

 

The design is observed to be A-optimal at 4-design points. 

After 1000 iterations, the A-optimal criterion value is 100 and 

the optimal design points are 𝑥1 = 0,  𝑥2 = 0;  𝑥1 = 0,  𝑥2 =
1; 𝑥1 = 1,  𝑥2 = 0 and 𝑥1 = 1,  𝑥2 = 1. The constructed A-

optimal design weight at each optimal design pointis 𝑤1 =
𝑤2 =  𝑤3 = 𝑤4 = 0.25. 

Considering the model in equation (2.2), the constructed A-

optimal design is presented in equation (3.3b) 

𝜉𝐴
∗ = {

(0, 0, 1)(0, 1, 0)(0, 1, 1)(1, 0, 0)(1, 1, 0)(1, 1, 1)

1

6

1

6

1

6

1

6

1

6

1

6

}  (3.3𝑏) 
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Considering the three-variable Poisson regression model, the 

design in equation (3.3b) is A-optimal at 6-design points with 

support points 𝑥1 = 0,  𝑥2 = 0,  𝑥3 = 1;  𝑥1 = 0,  𝑥2 =
1,  𝑥3 = 0𝑥1 = 0,  𝑥2 = 1,  𝑥3 = 1; 𝑥1 = 1,  𝑥2 = 0,  𝑥3 = 0; 

𝑥1 = 1,  𝑥2 = 1,  𝑥3 = 0; and 𝑥1 = 1,  𝑥2 = 1,  𝑥3 = 1 . The 

constructed A-optimal design weight at each optimal design 

pointis 𝑤1 = 𝑤2 = 𝑤3 =  𝑤4 =  𝑤5 = 𝑤6 = 0.1667. 

 

Table 1: D-optimal design efficiencies 

Model 
Efficiency Lower  

Bound (ELB) 

𝜏𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖) 75.0000% 

𝜏𝑖  =  𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖) 71.4286% 

 

 

Table 2: A-optimal design efficiencies 

Model A-Efficiencies 

𝜏𝑖 = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖) 100% 

𝜏𝑖  =  𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖) 88% 

 

 
Fig. 1: Optimal efficiency search values of A-optimal 

design for Poisson regression model with two variables 

 

 
Fig. 2: Optimal efficiency search values of A-optimal 

design for Poisson regression model with three variables 

 

 

Efficiencies of D- and A-optimal designs  

Tables 1 and 2 show the efficiencies of D- and A-optimal 

designs for two- and three- variable Poisson regression 

models respectively.The modelsin equations (2.1) and 

(2.2) were found to be 75% D-efficient and 71.43% D-

efficient, respectively. For A-efficiencies, the models in 

equations (2.1) and (2.2) were found to be 100% A-

efficient and 88% A-efficient respectively. The results of 

the A-efficiencies can also be observed from Figs. 1 and 2, 

respectively. 

 

Conclusion 

This study examines the efficiencies of D- and A-optimal 

designs for Poisson regression models involving two and three 

explanatory variables. Optimal designs were constructed for 

the considered criteria and their efficiencies were evaluated. 

The optimality criteria considered were found to be more 

efficient for two-variable Poisson regression than three-

variable Poisson regression. The two-variable Poisson 

regression model was observed to be perfectly A-efficient, 

yielding 100% design efficiency. Comparatively, this implies 

that the two-variable Poisson regression model should be 

broadly preferred to the three-variable Poisson regression 

model. 
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